"Translocation of Crohn's disease Escherichia coliacross M-cells: contrasting effects of soluble plant fibres and emulsifiers" in Inflammatory Bowel Disease (2010)
" We have assessed the effect of soluble non-starch polysaccharide (NSP) and food emulsifiers on translocation ofEscherichia coli across M-cells. ... Plantain and broccoli NSP markedly reduced E coli translocation across M-cells at 5 mg/ml (range 45.3–82.6% inhibition, p<0.01).... Similarly, E coli translocation across human Peyer's patches was reduced 45±7% by soluble plantain NSP (5 mg/ml). ... Translocation of E coli across M-cells is reduced by soluble plant fibres, particularly plantain and broccoli...."
Do you ever wonder what you really know about Crohn's Disease despite your experience and all the information out there? Do you find yourself unsettled, wondering why the pieces never seem to really fit together? Through simple questions linked to research evidence, this blog is a place where you can think quietly about Crohn's Disease, its cause, nature, and control. Join me in constructing a new view of Crohn's Disease. Your comments are gold.
Showing posts with label bacterial translocation. Show all posts
Showing posts with label bacterial translocation. Show all posts
26.1.12
8.11.11
What is barrier function?
"Intestinal barrier function" in Curr Opin Clin Nutr Metab Care (2002)
"Intestinal barrier function regulates transport and host defense mechanisms at the mucosal interface with the outside world. Transcellular and paracellular fluxes are tightly controlled by membrane pumps, ion channels and tight junctions, adapting permeability to physiological needs. Food and microbial antigens are under constant surveillance of the mucosal immune system. Tolerance against commensals and immunity against pathogens require intact antigen uptake, recognition, processing and response mechanisms. Disturbance at any level, but particularly bacterial translocation due to increased permeability and breakdown of oral tolerance due to compromised epithelial and T cell interaction, can result in inflammation and tissue damage. New therapeutic approaches including probiotics and peptides to restore disrupted barrier function are evolving."
"Intestinal barrier function regulates transport and host defense mechanisms at the mucosal interface with the outside world. Transcellular and paracellular fluxes are tightly controlled by membrane pumps, ion channels and tight junctions, adapting permeability to physiological needs. Food and microbial antigens are under constant surveillance of the mucosal immune system. Tolerance against commensals and immunity against pathogens require intact antigen uptake, recognition, processing and response mechanisms. Disturbance at any level, but particularly bacterial translocation due to increased permeability and breakdown of oral tolerance due to compromised epithelial and T cell interaction, can result in inflammation and tissue damage. New therapeutic approaches including probiotics and peptides to restore disrupted barrier function are evolving."
25.6.11
Can curcumin reduce Crohn's symptoms?

"Curcumin is the principal curcuminoid of the popular Indian spice turmeric, which is a member of the ginger family (Zingiberaceae). ... At present, these effects have not been confirmed in humans. However, as of 2008, numerous clinical trials in humans were underway, studying the effect of curcumin on various diseases, including multiple myeloma, pancreatic cancer, myelodysplastic syndromes, colon cancer, psoriasis, and Alzheimer's disease. In vitro and animal studies have suggested curcumin may have antitumor, antioxidant, antiarthritic, antiamyloid, anti-ischemic, and anti-inflammatory properties. ... Curcumin acts as a free radical scavenger and antioxidant, inhibiting lipid peroxidation[19] and oxidative DNA damage."
Tumeric from the world's healthiest foods
"A Potent, Yet Safe Anti-Inflammatory: The volatile oil fraction of turmeric has demonstrated significant anti-inflammatory activity in a variety of experimental models. Even more potent than its volatile oil is the yellow or orange pigment of turmeric, which is called curcumin. Curcumin is thought to be the primary pharmacological agent in turmeric. In numerous studies, curcumin's anti-inflammatory effects have been shown to be comparable to the potent drugs hydrocortisone and phenylbutazone as well as over-the-counter anti-inflammatory agents such as Motrin. Unlike the drugs, which are associated with significant toxic effects (ulcer formation, decreased white blood cell count, intestinal bleeding), curcumin produces no toxicity.An Effective Treatment for Inflammatory Bowel Disease: Curcumin may provide an inexpensive, well-tolerated, and effective treatment for inflammatory bowel disease (IBD) such as Crohn's and ulcerative colitis, recent research suggests. In this study, mice given an inflammatory agent that normally induces colitis were protected when curcumin was added to their diet five days beforehand. The mice receiving curcumin not only lost much less weight than the control animals, but when researchers checked their intestinal cell function, all the signs typical of colitis (mucosal ulceration, thickening of the intestinal wall, and the infiltration of inflammatory cells)were all much reduced. While the researchers are not yet sure exactly how curcumin achieves its protective effects, they think its benefits are the result of not only antioxidant activity, but also inhibition of a major cellular inflammatory agent called NF kappa-B. Plus, an important part of the good news reported in this study is the fact that although curcumin has been found to be safe at very large doses, this component of turmeric was effective at a concentration as low as 0.25 per cent&mash;an amount easily supplied by simply enjoying turmeric in flavorful curries.
Relief for Rheumatoid Arthritis: Clinical studies have substantiated that curcumin also exerts very powerful antioxidant effects. As an antioxidant, curcumin is able to neutralize free radicals, chemicals that can travel through the body and cause great amounts of damage to healthy cells and cell membranes. This is important in many diseases, such as arthritis, where free radicals are responsible for the painful joint inflammation and eventual damage to the joints. Turmeric's combination of antioxidant and anti-inflammatory effects explains why many people with joint disease find relief when they use the spice regularly. In a recent study of patients with rheumatoid arthritis, curcumin was compared to phenylbutazone and produced comparable improvements in shortened duration of morning stiffness, lengthened walking time, and reduced joint swelling."
For ideas on how to increase bioavailability, see "Make Mincemeat of Cancer Cells With This Breakthrough Spice" from Mercola.com
"One work-around is to use the curcumin powder and make a microemulsion of it by combining a tablespoon of the powder and mixing it into 1-2 egg yolks and a teaspoon or two of melted coconut oil. Then use a high speed hand blender to emulsify the powder.
Another strategy that can help increase absorption is to put one tablespoon of the curcumin powder into a quart of boiling water. It must be boiling when you add the powder as it will not work as well if you put it in room temperature water and heat the water and curcumin. After boiling it for ten minutes you will have created a 12 percent solution that you can drink once it has cooled down. It will have a woody taste. The curcumin will gradually fall out of solution however. In about six hours it will be a 6 percent solution, so it's best to drink the water within four hours. Dr. LaValley is also helping us beta test new curcumin preparations that will radically simplify this process."
"Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets" in Trends in Pharmcological Targets (2009)
"Extensive research within the past two decades has shown that curcumin mediates its anti-inflammatory effects through the downregulation of inflammatory transcription factors (such as nuclear factor κB), enzymes (such as cyclooxygenase 2 and 5 lipoxygenase) and cytokines (such as tumor necrosis factor, interleukin 1 and interleukin 6)."
"Dietary polyphenols can modulate the intestinal inflammatory response" in Nutrition Reviews (2009)
"Studies, conducted using in vivo and in vitro models, provide evidence that pure polyphenolic compounds and natural polyphenolic plant extracts can modulate intestinal inflammation."
"Anti-Inflammatory Effects of Resveratrol, Curcumin and Simvastatin in Acute Small Intestinal Inflammation " in PLoS ONE (2010)
"In a recent study, Curcumin has been shown to inhibit oxidative stress [36] that in turn has been associated with tight junction opening, thereby modifying intestinal permeability [37]. In the present study, bacterial translocation rates (due to compromised epithelial barrier function) into spleen and cardiac blood after treatment with either compound were lower as compared to the Placebo group. Therefore, Resveratrol, Simvastatin, and Curcumin might modulate tight junction protein expression and function." [See my post entitled "Does Resveratol lessen the symptoms of CD?"]"Curcumin: Getting Back to the Roots" by Shishodia et al., Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas
"Modern science has revealed that curcumin mediates its effects by modulation of several important molecular targets, including transcription factors (e.g., NF- B, AP-1, Egr-1, -catenin, and PPAR- ), enzymes (e.g., COX2, 5-LOX, iNOS, and hemeoxygenase-1), cell cycle proteins (e.g., cyclin D1 and p21), cytokines (e.g., TNF, IL-1, IL-6, and chemokines), receptors (e.g., EGFR and HER2), and cell surface adhesion molecules. Because it can modulate the expression of these targets, curcumin is now being used to treat cancer, arthritis, diabetes, Crohn’s disease, cardiovascular diseases, osteoporosis, Alzheimer’s disease, psoriasis, and other pathologies."
"Curcumin has Bright Prospects for the Treatment of Inflammatory Bowel Disease" in Current Pharmaceutical Design (2009)
"... [I]n recent years, a large number of research papers have reported intriguing pharmacologic effects associated with curcumin. These include inhibitory effects on cyclooxygenases 1, 2 (COX-1, COX-2), lipoxygenase (LOX), TNF-α, interferon γ (IFN-γ), inducible nitric oxide synthase (iNOS), and the transcriptional nuclear factor kappa B (NF-κB), in addition to a strong anti-oxidant effect. NF-κB is a key factor in the upregulation of inflammatory cytokines that have a high profile in inflammatory diseases, suggesting that curcumin could be a novel therapeutic agent for patients with IBD. Therefore, in recent years, the efficacy of curcumin has been investigated in several experimental models of IBD. The results indicate striking suppression of induced IBD colitis and changes in cytokine profiles, from the pro-inflammatory Th1 to the anti-inflammatory Th2 type. In human IBD, up to now, only one open study has achieved encouraging results. In this study, patients were given curcumin (360mg/dose) 3 or 4 times/day for three months. Further, curcumin significantly reduced clinical relapse in patients with quiescent IBD. The inhibitory effects of curcumin on major inflammatory mechanisms like COX-2, LOX, TNF-α, IFN-γ, NF-κB and its unrivalled safety profile suggest that it has bright prospects in the treatment of IBD. However, randomized controlled clinical investigations in large cohorts of patients are needed to fully evaluate the clinical potential of curcumin."
"Curcumin for inflammatory bowel disease: a review of human studies" in Alt Med Rev (2011)
"Although two small studies have shown promising results, all authors conclude that larger-scale, double-blind trials need to be conducted to establish a role for curcumin in the treatment of ulcerative colitis. In addition to improving results when used in conjunction with conventional medications for UC, curcumin may pose a less-expensive alternative."
"Novel formulation of solid lipid microparticles of curcumin for anti-angiogenic and anti-inflammatory activity for optimization of therapy of inflammatory bowel disease" in Journal of Pharmact and Pharmacology (2010)
"Objectives This project was undertaken with a view to optimize the treatment of inflammatory bowel disease through a novel drug delivery approach for localized treatment in the colon. Curcumin has poor aqueous solubility, poor stability in the gastrointestinal tract and poor bioavailability. The purpose of the study was to prepare and evaluate the anti-inflammatory activity of solid lipid microparticles (SLMs) of curcumin for the treatment of inflammatory bowel disease in a colitis-induced rat model by a colon-specific delivery approach. ...
Conclusions The degree of colitis caused by administration of DSS was significantly attenuated by colonic delivery of SLMs of curcumin. Being a nontoxic natural dietary product, curcumin could be useful in the therapeutic strategy for inflammatory bowel disease patients."
"Molecular Targets of Dietary Polyphenols with Anti-inflammatory Properties" in Yonsei Med J (2005)
"Studies using isolated bovine COX-1 and COX-2 enzymes showed that curcumin had significantly higher inhibitory effects on the peroxidase activity of COX-1 than that of COX-2"
"Bioavailability of curcumin" post on Margaret's Corner, section on "My Discovery of Curcumin" and her journey with Multiple Myeloma"Pre-, "Pro-, Synbiotics and Human Health"in Symbiotics and Human Health (2010)
"... eating substantial amounts of foods with documented anti-inflammatory effects such as turmeric/curcumin, molecules which might be included in future synbiotic compositions."
See my post "Can ginger reduce the symptoms of CD?"
4.6.11
Does broccoli improve Crohn's symptoms?
"Translocation of Crohn's disease Escherichia coliacross M-cells: contrasting effects of soluble plant fibres and emulsifiers" in Inflammatory Bowel Disease (2010)
" We have assessed the effect of soluble non-starch polysaccharide (NSP) and food emulsifiers on translocation ofEscherichia coli across M-cells. ... Plantain and broccoli NSP markedly reduced E coli translocation across M-cells at 5 mg/ml (range 45.3–82.6% inhibition, p<0.01).... Similarly, E coli translocation across human Peyer's patches was reduced 45±7% by soluble plantain NSP (5 mg/ml). ... Translocation of E coli across M-cells is reduced by soluble plant fibres, particularly plantain and broccoli...."
"Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a−/− mice, a model of inflammatory bowel diseases" in Nutrition (2012)
"In comparison to mice fed the control diet, blueberry and broccoli supplementation altered cecum microbiota similarly with the exception of Faecalibacterium prausnitzii, which was found to be significantly lower in broccoli-fed mice. High concentrations of butyric acid and low concentrations of succinic acid were observed in the cecum of broccoli-fed mice. Blueberry- and broccoli-supplemented diets increased colon crypt size and the number of goblet cells per crypt. Only the broccoli-supplemented diet significantly lowered colonic inflammation compared to mice fed the control diet. Translocation of total microbes to mesenteric lymph nodes was lower in broccoli-fed mice compared to blueberry and control diet groups."
" We have assessed the effect of soluble non-starch polysaccharide (NSP) and food emulsifiers on translocation ofEscherichia coli across M-cells. ... Plantain and broccoli NSP markedly reduced E coli translocation across M-cells at 5 mg/ml (range 45.3–82.6% inhibition, p<0.01).... Similarly, E coli translocation across human Peyer's patches was reduced 45±7% by soluble plantain NSP (5 mg/ml). ... Translocation of E coli across M-cells is reduced by soluble plant fibres, particularly plantain and broccoli...."
"Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a−/− mice, a model of inflammatory bowel diseases" in Nutrition (2012)
"In comparison to mice fed the control diet, blueberry and broccoli supplementation altered cecum microbiota similarly with the exception of Faecalibacterium prausnitzii, which was found to be significantly lower in broccoli-fed mice. High concentrations of butyric acid and low concentrations of succinic acid were observed in the cecum of broccoli-fed mice. Blueberry- and broccoli-supplemented diets increased colon crypt size and the number of goblet cells per crypt. Only the broccoli-supplemented diet significantly lowered colonic inflammation compared to mice fed the control diet. Translocation of total microbes to mesenteric lymph nodes was lower in broccoli-fed mice compared to blueberry and control diet groups."
Does Polysorbate 80 (emulsifier) worsen Crohn's symptoms?
"Food Components Influence Bacterial Pathology of Crohn's Disease" from Medscape Today News
"The translocation of Escherichia coli across M (microfold) cells and Peyer's patches in Crohn's disease is inhibited by plant fiber but increases with low concentrations of polysorbate 80, an emulsifier commonly used in processed foods, new research findings suggest."
"Translocation of Crohn's disease Escherichia coliacross M-cells: contrasting effects of soluble plant fibres and emulsifiers" in Inflammatory Bowel Disease (2010)
" We have assessed the effect of soluble non-starch polysaccharide (NSP) and food emulsifiers on translocation of Escherichia coli across M-cells. ... Polysorbate-80, 0.01% vol/vol, increased E coli translocation through Caco2-cl1 monolayers 59-fold (p<0.05) and, at higher concentrations, increased translocation across M-cells. Similarly, E coli translocation across human Peyer's patches was reduced 45±7% by soluble plantain NSP (5 mg/ml) and increased 2-fold by polysorbate-80 (0.1% vol/vol). ...
Translocation of E coli across M-cells is reduced by soluble plant fibres, particularly plantain and broccoli, but increased by the emulsifier Polysorbate-80. These effects occur at relevant concentrations and may contribute to the impact of dietary factors on Crohn's disease pathogenesis."
"The translocation of Escherichia coli across M (microfold) cells and Peyer's patches in Crohn's disease is inhibited by plant fiber but increases with low concentrations of polysorbate 80, an emulsifier commonly used in processed foods, new research findings suggest."
"Translocation of Crohn's disease Escherichia coliacross M-cells: contrasting effects of soluble plant fibres and emulsifiers" in Inflammatory Bowel Disease (2010)
" We have assessed the effect of soluble non-starch polysaccharide (NSP) and food emulsifiers on translocation of Escherichia coli across M-cells. ... Polysorbate-80, 0.01% vol/vol, increased E coli translocation through Caco2-cl1 monolayers 59-fold (p<0.05) and, at higher concentrations, increased translocation across M-cells. Similarly, E coli translocation across human Peyer's patches was reduced 45±7% by soluble plantain NSP (5 mg/ml) and increased 2-fold by polysorbate-80 (0.1% vol/vol). ...
Translocation of E coli across M-cells is reduced by soluble plant fibres, particularly plantain and broccoli, but increased by the emulsifier Polysorbate-80. These effects occur at relevant concentrations and may contribute to the impact of dietary factors on Crohn's disease pathogenesis."
Subscribe to:
Posts (Atom)